
Unit 2 

DBMS BTCS 501-18



Relational query languages 

Relational algebra



Relational Algebra and Calculus



Query Languages  
(e.g. SQL)

Are specialized 
languages  for asking 
questions.

Relational Algebra and Calculus

Procedural: Algebra Declarative: Calculus



Query
Instance

s  of  
Relations

Instances  
of
A 

Relati
on



Relational Algebra

• Queries are composed using a 
collection  of operators.

• Every operator:
– Accepts one or two relation instances
– Returns a relation instance.

• Compose relational algebra expression
• Each query describes a step-by-step  
procedure for computing the desired  
answer.



Relational Algebra

• Five basic
operators
– Selection

– Projection

– Union

– Cross-product

– Difference



Selection


Selection_Criteria

(Input

)

A relation instance

The selection operator specifies the tuples to retain through selection 
criteria.

A boolean combination (i.e. using V and ᴧ) of terms

Attribute op constant or attribute1 op attribute2

< , <=, =, ≠, >=, or 
>

Manipulates data in a single
relation



Selection

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2


rating

(S2)

8

sid sname rating age

28 yuppy 9 35.0
58 rusty 10 35.0



Projection



fields
(Input)

Allows us to extract columns from a
relation

Example:
age

35.0
55.5

age
(S2

)

sid sname rating age

28 yuppy 9 35.0
31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0




sname,ratin

g

(
rating8

(S2)

)

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sname rating

yuppy 9

rusty 10



Set Operations

• Takes as input two relation instances
• Four standard operations

– Union
– Intersection
– Set-difference
– Cross-product

• Union, intersection, and difference 
require  the two input set to be union 
compatible
– They have the same number of fields
– corresponding fields, taken in order from 
left  to right, have the same domains



Set Operation: Union

• R U S returns relation instance  
containing all tuples that occur in 
either  relation instance R or S, or 
both.

• R and S must be union compatible.

• Schema of the result is defined to be  
that of R.



Set Operation: Union

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1 S2

S1 U S2



Set Operation: Intersection

• R ⋂ S: returns a relation instance  
containing all tuples that occur in both 
R  and S.

• R and S must be union compatible.

• Schema of the result is that of R.



Set Operation: Intersection

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1 S2

S1 ⋂ S2
sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0



Set Operation: Set-Difference

• R – S: returns a relation instance  
containing all tuples that occur in R 
but  not in S.

• R and S must be union-compatible.

• Scheme of the result is the schema 
of  R.



Set Operation: Set-Difference

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1 S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0

S1 – S2



Set Operation: Cross-Product

• R x S: Returns a relation instance whose  
scheme contains:
– All the fields of R (in the same order as 
they  appear in R)

– All the fields os S (in the same order as 
they  appear in S)

• The result contains one tuple <r,s> for 
each  pair with r ⋳ R and s ⋳ S

• Basically, it is the Cartesian product.

• Fields of the same name are unnamed.



Set Operation: Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 x R1



Renaming

• Name conflict can arise in some  
situations

• It is convenient to be able to give 
names  to the fields of a relation 
instance  defined by a relational 
algebra  expression.
s(A1,A2,..)(R) or s(R) or (A1,A2,..)(R)

• Returns an instance of a new relation S with A1,A2.. Renamed attributes



Renaming

(C(1→sid1,5→sid2),S1R1

)(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

sid1 sname rating age sid2 bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96



Question: Can you define R ⋂ S  

using other operators?



Other Operators?

• We can define any operation using 
the  operators that we have seen.

• Some other operations appear very  
frequently.

• So they deserve to have their own  
operators.
– Join

– Division



Join

• Can be defined as cross-product  
followed by selection and 
projection.

• We have several variants of join.
– Condition joins

– Equijoin

– Natural join



Condition Join /ThetA join
R c S =  c (R S)

Example: S1 
S1.sid  R1.sid

R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

(sid) sname rating age (sid) bid day

22

31

dustin

lubber

7

8

45.0

55.5

58

58

103

103

11/12/96

11/12/96



Equijoin

R c S

•Condition consists only of equalities connected by 
ᴧ
•Redundancy in retaining both attributes in result
•So, an additional projection is applied to remove  
the second attribute.



Equijoin

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1
S1.sid =R1.sid

R1Example:

sid sname rating age bid day

22

58

dustin

rusty

7

10

45.0

35.0

101

103

10/10/96

11/12/96



Natural Join

• It is an equijoin in which equalities 
are  specified on all fields having the 
same  name in R and S

• We can then omit the join condition.

• Result is guaranteed not to have two  
fields with the same name.

• If no fields in common, then natural 
join  is simply cross product.

S1  * R1



Division

• Suppose A has two groups of fields 
<x,y>

• y fields are same fields in terms of  
domain as B

• A/B = <x> such as for every y value 
in a  tuple of B there is <x,y> in A.



Division

sno pno

s1 p1
s1 p2

s1 p3

s1 p4

s2 p1

s2 p2

s3 p2

s4 p2

s4 p4

pno pno

p2

p4

pno

p1

p2

p4

sno
s1

s2

s3

s4

• p2

• B1

• B2

• B3

sno

s1

s4
sno

s1

A/B
1

A/B
2

A/B
3



Question: Can we define A/B  

using the other basic operators?

Disqualified x
values:

A/B
:

 x (A) − all disqualified
tuples

 x (( x (A)B)−

A)



Examples
Reserves

sid sname ratin age

Q1. Find the names of sailors who have reserved boat
103 sname(( bid=103

Reserves) Sailors)

103
(Reserves
Sailors))

 sname(
bid=

Solution 1:

Solution 2:

Sailors Boats



Examples
Reserves

sid sname ratin age

Sailors Boats

Q2: Find the names of sailors who have reserved a red
boat.  sname((

color =' red '
Boats)  Reserves Sailors)

 sname(
sid

((
bid


color =' red '

Boats)  Res)
Sailors)

Sol1:

Sol2:



Examples
Reserves

sid sname ratin age

Sailors Boats

Q3: Find the colors of boats reserved by
Lubber.

'Lubber

'

Sailors) Reserves
Boats)


color

((
sname=



Examples
Reserves

sid sname ratin age

Sailors Boats

Q5. Find the names of sailors who reserved a red or a green boat.

 (Tempboats, (
color =' red '  color =' green '

Boats))

 sname(Tempboats Reserves Sailors)



Relational Calculus

• An alternative to relational algebra.
• Declarative

– describe the set of answers
– without being explicit about how they should 

be  computed

• One variant is called: tuple relational 
calculus  (TRC).

• Another variant: domain relational calculus  
(DRC)

• Calculus has variables, constants, 
comparison  ops, logical connectives and 
quantifiers.



Tuple Relational Calculus
• A TRC query has the form {T | p(T)}

– T is a tuple variable

– p(T) is a formula that describes T

• Result: set of all tuples t to which 
p(T)  evaluates to true when T = t

• Example:



Tuple Relational Calculus
Q: Find the names and ages of sailors with a rating above
7

Q: Find the sailor name, boat id, and reservation date for each
reservation.



Domain Relational Calculus

• Query has the
form: x1, x2,...,xn | p x1,x2,...,

xn

























• Answer includes all
tuplesmake the
formula

be
true.



x1, x2,..., xn

 thatp x1,x2,...,

xn








 





Example: Find all sailors with a rating above
7

Giving each attribute 
a  variable name

Ensures that I, N, T, and 
A  are restricted to be 
fields  of the same tuple



Algebra Vs Calculus

• Every query that can be expressed in  
relational algebra can also be 
expressed  in relational calculus.

• The other way around is a bit tricky.  
Think, for example, about:



Conclusions

• Relational algebra and calculus are the  
foundation of query languages like SQL.

• Queries are expressed by languages like  
SQL, and the DBMS translates the 
query  into relational algebra.

– DBMS tries to look for the cheapest relational  
expression.

• Section 4.2.6 is very useful, pay close  
attention to it.

• For the calculus part, we will use slides  
only.



Normal Forms



Definition 

• This is the process which allows you to winnow out redundant data 

within your database. 

• This involves restructuring the tables to successively meeting higher 

forms of Normalization. 

• A properly normalized database should have the following 

characteristics

– Scalar values in each fields

– Absence of redundancy.

– Minimal use of null values.

– Minimal loss of information. 



• Levels of normalization based on the amount of 

redundancy in the database.

• Various levels of normalization are:
– First Normal Form (1NF)

– Second Normal Form (2NF)

– Third Normal Form (3NF)

– Boyce-Codd Normal Form (BCNF)

– Fourth Normal Form (4NF)

– Fifth Normal Form (5NF)

– Domain Key Normal Form (DKNF) 

Levels of Normalization 

R
e
d

u
n

d
a
n

c
y

N
u

m
b

e
r 

o
f 

T
a
b

le
s

Most databases should be 3NF or BCNF in order to avoid 

the database anomalies. 

C
o

m
p

le
x
it

y



Levels of Normalization 

Each higher level is a subset of the lower level 

DKNF

1NF

2NF
3NF

4NF

5NF



A table is considered to be in 1NF if all the fields contain

only scalar values (as opposed to list of values). 

Example (Not 1NF)

First Normal Form  (1NF) 

Author and AuPhone columns are not scalar

0-321-32132-1 Balloon Sleepy, 

Snoopy, 

Grumpy

321-321-1111, 

232-234-1234, 

665-235-6532

Small House 714-000-0000 $34.00

0-55-123456-9 Main Street Jones, 

Smith

123-333-3333, 

654-223-3455

Small House 714-000-0000 $22.95

0-123-45678-0 Ulysses Joyce 666-666-6666 Alpha Press 999-999-9999 $34.00

1-22-233700-0 Visual 

Basic

Roman 444-444-4444 Big House 123-456-7890 $25.00

ISBN Title AuName AuPhone PubName PubPhone Price



1. Place all items that appear in the repeating group in a 

new table

2. Designate a primary key for each new table produced. 

3. Duplicate in the new table the primary key of the table 

from which the repeating group was extracted or vice 

versa. 

Example (1NF)

1NF - Decomposition

0-321-32132-1 Balloon Small House 714-000-0000 $34.00

0-55-123456-9 Main Street Small House 714-000-0000 $22.95

0-123-45678-0 Ulysses Alpha Press 999-999-9999 $34.00

1-22-233700-0 Visual 

Basic

Big House 123-456-7890 $25.00

ISBN Title PubName PubPhone Price

ISBN AuName AuPhone

0-123-45678-0 Joyce 666-666-6666

1-22-233700-0 Roman 444-444-4444

0-55-123456-9 Smith 654-223-3455

0-55-123456-9 Jones 123-333-3333

0-321-32132-1 Grumpy 665-235-6532

0-321-32132-1 Snoopy 232-234-1234

0-321-32132-1 Sleepy 321-321-1111



1. If one set of attributes in a table determines another 

set of attributes in the table, then the second set of 

attributes is said to be functionally dependent on the 

first set of attributes.

Example 1

Functional Dependencies

0-321-32132-1 Balloon $34.00

0-55-123456-9 Main Street $22.95

0-123-45678-0 Ulysses $34.00

1-22-233700-0 Visual 

Basic

$25.00

ISBN Title Price Table Scheme: {ISBN, Title, Price}

Functional Dependencies: {ISBN} → {Title}

        {ISBN} → {Price}



Example 2

Functional Dependencies

1 Big House 999-999-9999

2 Small House 123-456-7890

3 Alpha Press 111-111-1111

PubID PubName PubPhone Table Scheme: {PubID, PubName, PubPhone}

Functional Dependencies: {PubId} → 

{PubPhone}

        {PubId} → 

{PubName}

       {PubName, PubPhone} → {PubID}

AuID AuName AuPhone

6 Joyce 666-666-6666

7 Roman 444-444-4444

5 Smith 654-223-3455

4 Jones 123-333-3333

3 Grumpy 665-235-6532

2 Snoopy 232-234-1234

1 Sleepy 321-321-1111

Example 3

Table Scheme: {AuID, AuName, AuPhone}

Functional Dependencies: {AuId} → 

{AuPhone}

        {AuId} → {AuName}

         {AuName, AuPhone} → {AuID}



FD – Example
Database to track reviews of papers submitted to an academic 

conference. Prospective authors submit papers for review and 

possible acceptance in the published conference proceedings. 

Details of the entities

– Author information includes a unique author number, a name, a 

mailing address, and a unique (optional) email address.

– Paper information includes the primary author, the paper number, 

the title, the abstract, and review status (pending, 

accepted,rejected)

– Reviewer information includes the reviewer number, the name, the 

mailing address, and a unique (optional) email address

– A completed review includes the reviewer number, the date, the 

paper number, comments to the authors, comments to the 

program chairperson, and ratings (overall, originality, correctness, 

style, clarity)



FD – Example

Functional Dependencies

– AuthNo → AuthName, AuthEmail, AuthAddress

– AuthEmail → AuthNo

– PaperNo → Primary-AuthNo, Title, Abstract, Status

– RevNo → RevName, RevEmail, RevAddress

– RevEmail → RevNo

– RevNo, PaperNo → AuthComm, Prog-Comm, Date, 

Rating1, Rating2, Rating3, Rating4, Rating5



For a table to be in 2NF, there are two requirements

– The database is in first normal form 

– All nonkey attributes in the table must be functionally dependent on the 

entire primary key

Note: Remember that we are dealing with non-key attributes

Example 1 (Not 2NF) 

Scheme → {Title, PubId, AuId, Price, AuAddress}

1. Key → {Title, PubId, AuId}

2. {Title, PubId, AuID} → {Price}

3. {AuID} → {AuAddress}

4. AuAddress does not belong to a key

5. AuAddress functionally depends on AuId which is a subset of a 

key 

Second Normal Form  (2NF) 



Example 2 (Not 2NF) 

Scheme → {City, Street, HouseNumber, HouseColor, CityPopulation}

1. key → {City, Street, HouseNumber}

2. {City, Street, HouseNumber} → {HouseColor}

3. {City} → {CityPopulation} 

4. CityPopulation does not belong to any key.

5. CityPopulation is functionally dependent on the City which is a proper 

subset of  the key 

Example 3 (Not 2NF) 

Scheme → {studio, movie, budget, studio_city} 

1. Key → {studio, movie}

2. {studio, movie} → {budget}

3. {studio} → {studio_city}

4. studio_city is not a part of a key 

5. studio_city functionally depends on studio which is a proper subset of the 
key

Second Normal Form  (2NF) 



1. If a data item is fully functionally dependent on only a part of the 

primary key, move that data item and that part of the primary 

key to a new table.

2. If other data items are functionally dependent on the same part 

of the key, place them in the new table also

3. Make the partial primary key copied from the original table the 

primary key for the new table. Place all items that appear in the 

repeating group in a new table

Example 1 (Convert to 2NF) 

Old Scheme → {Title, PubId, AuId, Price, AuAddress}

New Scheme → {Title, PubId, AuId, Price}

New Scheme → {AuId, AuAddress}

2NF - Decomposition



Example 2 (Convert to  2NF) 

Old Scheme → {Studio, Movie, Budget, StudioCity}

New Scheme → {Movie, Studio, Budget}

New Scheme → {Studio, City}

Example 3 (Convert to  2NF) 

Old Scheme → {City, Street, HouseNumber, HouseColor, 

CityPopulation}

New Scheme → {City, Street, HouseNumber, HouseColor}

New Scheme → {City, CityPopulation}

2NF - Decomposition



This form dictates that all non-key attributes of a table must be functionally 
dependent on a candidate key i.e. there can be no interdependencies 
among non-key attributes.

For a table to be in 3NF, there are two requirements

– The table should be second normal form

– No attribute is transitively dependent on the primary key

Example (Not in 3NF)

Scheme → {Title, PubID, PageCount, Price }

1. Key → {Title, PubId}

2. {Title, PubId} → {PageCount}

3. {PageCount} → {Price}

4. Both Price and PageCount depend on a key hence 2NF

5. Transitively {Title, PubID} → {Price} hence not in 3NF

Third Normal Form  (3NF) 



Example 2 (Not in 3NF) 

Scheme → {Studio, StudioCity, CityTemp} 

1. Primary Key → {Studio}

2. {Studio} → {StudioCity}

3. {StudioCity} → {CityTemp}

4. {Studio} → {CityTemp}

5. Both StudioCity and CityTemp depend on the entire key hence 2NF

6. CityTemp transitively depends on Studio hence violates 3NF 

Example 3 (Not in 3NF) 

Scheme → {BuildingID, Contractor, Fee}

1. Primary Key → {BuildingID}

2. {BuildingID} → {Contractor}

3. {Contractor} → {Fee} 

4. {BuildingID} → {Fee}

5. Fee transitively depends on the BuildingID

6. Both Contractor and Fee depend on the entire key hence 2NF

Third Normal Form  (3NF) 

BuildingI

D

Contractor Fee

100 Randolph 1200

150 Ingersoll 1100

200 Randolph 1200

250 Pitkin 1100

300 Randolph 1200



1. Move all items involved in transitive dependencies to a new 

entity.

2. Identify a primary key for the new entity.

3. Place the primary key for the new entity as a foreign key on the 

original entity. 

Example 1 (Convert to 3NF) 

Old Scheme → {Title, PubID, PageCount, Price }

New Scheme → {PubID, PageCount, Price}

New Scheme → {Title, PubID, PageCount}

3NF - Decomposition



Example 2 (Convert to  3NF) 

Old Scheme → {Studio, StudioCity, CityTemp}

New Scheme → {Studio, StudioCity}

New Scheme → {StudioCity, CityTemp}

Example 3 (Convert to  3NF) 

Old Scheme → {BuildingID, Contractor, Fee}

New Scheme → {BuildingID, Contractor}

New Scheme → {Contractor, Fee}

3NF - Decomposition

BuildingI

D

Contractor

100 Randolph

150 Ingersoll

200 Randolph

250 Pitkin

300 Randolph

Contractor Fee

Randolph 1200

Ingersoll 1100

Pitkin 1100



• BCNF does not allow dependencies between attributes that belong to candidate keys.

• BCNF is a refinement of the third normal form in which it drops the restriction of a non-

key attribute from the 3rd normal form. 

• Third normal form and BCNF are not same if the following conditions are true:

– The table has two or more candidate keys

– At least two of the candidate keys are composed of more than one attribute

– The keys are not disjoint i.e. The composite candidate keys share some attributes

Example 1 - Address (Not in BCNF)

Scheme → {City, Street, ZipCode }

1. Key1 → {City, Street }

2. Key2 → {ZipCode, Street}

3. No non-key attribute hence 3NF

4. {City, Street} → {ZipCode}

5. {ZipCode} → {City}

6. Dependency between attributes belonging to a key

Boyce-Codd Normal Form  (BCNF) 



Example 2 - Movie (Not in BCNF)

Scheme → {MovieTitle, MovieID, PersonName, Role, Payment } 

1. Key1 → {MovieTitle, PersonName}

2. Key2 → {MovieID, PersonName}

3. Both role and payment functionally depend on both candidate keys thus 

3NF

4. {MovieID} → {MovieTitle}

5. Dependency between MovieID & MovieTitle Violates BCNF

Example 3 - Consulting (Not in BCNF)

Scheme → {Client, Problem, Consultant}

1. Key1 → {Client, Problem}

2. Key2 → {Client, Consultant} 

3. No non-key attribute hence 3NF

4. {Client, Problem} → {Consultant}

5. {Client, Consultant} → {Problem}

6. Dependency between attributess belonging to keys violates BCNF 

Boyce Codd Normal Form  (BCNF)



1. Place the two candidate primary keys in separate 
entities

2. Place each of the remaining data items in one of the 
resulting entities according to its dependency on the 
primary key. 

Example 1 (Convert to BCNF) 

Old Scheme → {City, Street, ZipCode }

New Scheme1 → {ZipCode, Street}

New Scheme2 → {City, Street}

• Loss of relation {ZipCode} → {City}

Alternate New Scheme1 → {ZipCode, Street }

Alternate New Scheme2 → {ZipCode, City}

BCNF - Decomposition



1. If decomposition does not cause any loss of information it is 

called a lossless decomposition. 

2. If a decomposition does not cause any dependencies to be lost 

it is called a dependency-preserving decomposition. 

3. Any table scheme can be decomposed in a lossless way into a 

collection of smaller schemas that are in BCNF form. However 

the dependency preservation is not guaranteed. 

4. Any table can be decomposed in a lossless way into 3rd normal 

form that also preserves the dependencies.

• 3NF may be better than BCNF in some cases

Decomposition – Loss of 

Information

Use your own judgment when decomposing schemas



Example 2  (Convert to  BCNF) 

Old Scheme → {MovieTitle, MovieID, PersonName, Role, Payment }

New Scheme → {MovieID, PersonName, Role, Payment}

New Scheme → {MovieTitle, PersonName}

• Loss of relation {MovieID} → {MovieTitle}

New Scheme → {MovieID, PersonName, Role, Payment}

New Scheme → {MovieID, MovieTitle}

• We got the {MovieID} → {MovieTitle} relationship back

Example 3  (Convert to  BCNF)

Old Scheme → {Client, Problem, Consultant}

New Scheme → {Client, Consultant}

New Scheme → {Client, Problem}

BCNF - Decomposition



• Fourth normal form eliminates independent many-to-one 

relationships between columns. 

• To be in Fourth Normal Form, 
– a relation must first be in Boyce-Codd Normal Form.

– a given relation may not contain more than one multi-valued 

attribute.

Example (Not in 4NF)

Scheme → {MovieName, ScreeningCity, Genre)

Primary Key: {MovieName, ScreeningCity, Genre)

1. All columns are a part of the only candidate key, hence BCNF

2. Many Movies can have the same Genre 

3. Many Cities can have the same movie

4. Violates 4NF 

Fourth Normal Form  (4NF) 

Movie ScreeningCit

y

Genre

Hard Code Los Angles Comedy

Hard Code New York Comedy

Bill Durham Santa Cruz Drama

Bill Durham Durham Drama

The Code Warrier New York Horror



Example 2 (Not in 4NF) 

Scheme → {Manager, Child, Employee} 

1. Primary Key → {Manager, Child, Employee}

2. Each manager can have more than one child 

3. Each manager can supervise more than one employee

4. 4NF Violated

Example 3 (Not in 4NF) 

Scheme → {Employee, Skill, ForeignLanguage}

1. Primary Key → {Employee, Skill, Language }

2. Each employee can speak multiple languages

3. Each employee can have multiple skills

4. Thus violates 4NF

Fourth Normal Form  (4NF) 
Manager Child Employee

Jim Beth Alice

Mary Bob Jane

Mary NULL Adam

Employe

e

Skill Languag

e
1234 Cooking French

1234 Cooking German

1453 Carpentry Spanish

1453 Cooking Spanish

2345 Cooking Spanish



1. Move the two multi-valued relations to separate tables

2. Identify a primary key for each of the new entity.

Example 1 (Convert to 3NF) 

Old Scheme → {MovieName, ScreeningCity, Genre}

New Scheme → {MovieName, ScreeningCity}

New Scheme → {MovieName, Genre}

4NF - Decomposition

Movie Genre

Hard Code Comedy

Bill Durham Drama

The Code Warrier Horror

Movie ScreeningCit

y
Hard Code Los Angles

Hard Code New York

Bill Durham Santa Cruz

Bill Durham Durham

The Code Warrier New York



Example 2  (Convert to  4NF) 

Old Scheme → {Manager, Child, Employee}

New Scheme → {Manager, Child}

New Scheme → {Manager, Employee}

Example 3  (Convert to  4NF)

Old Scheme → {Employee, Skill, ForeignLanguage}

New Scheme → {Employee, Skill}

New Scheme → {Employee, ForeignLanguage}

4NF - Decomposition

Manager Child

Jim Beth

Mary Bob

Manager Employee

Jim Alice

Mary Jane

Mary Adam

Employe

e

Languag

e
1234 French

1234 German

1453 Spanish

2345 Spanish

Employe

e

Skill

1234 Cooking

1453 Carpentry

1453 Cooking

2345 Cooking



• Fifth normal form is satisfied when all tables are 

broken into as many tables as possible in order to 

avoid redundancy. Once it is in fifth normal form it 

cannot be broken into smaller relations without 

changing the facts or the meaning.

Fifth Normal Form  (5NF) 



• The relation is in DKNF when there can be no 

insertion or deletion anomalies in the database.

Domain Key Normal Form  (DKNF) 



Query Optimization

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

Imperative query execution plan:

SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 
    R.bid=100 AND S.rating>5

Declarative SQL query

Plan:  Tree of R.A. ops, with choice of alg for each op.

Ideally: Want to find best plan.  Practically: Avoid worst plans!

Goal:



Query Optimization Issues

• Query rewriting: 

– transformations from one SQL query to another 

one using semantic properties. 

• Selecting query execution plan:

– done on single query blocks (I.e., S-P-J blocks)

– main step: join enumeration

• Cost estimation:

– to compare between plans we need to estimate 

their cost using statistics on the database.



Query Rewriting: Predicate 

Pushdown

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 

sname

rating > 5
(Scan;
write to 
temp T1)

(Scan;
write to
temp T2)

The earlier we process selections, less tuples we need to manipulate

higher up in the tree (but may cause us to loose an important ordering

of the tuples.



Query Rewrites: Predicate 

Pushdown (more complicated)

Select   bid, Max(age)

From    Reserves R, Sailors S

Where  R.sid=S.sid  

GroupBy  bid

Having Max(age) > 40

Select   bid, Max(age)

From    Reserves R, Sailors S

Where  R.sid=S.sid  and

             S.age > 40

GroupBy  bid

Having Max(age) > 40

• Advantage: the size of the join will be smaller.

• Requires transformation rules specific to the grouping/aggregation

   operators.

• Won’t work if we replace Max by Min.



Query Rewrite: 

Predicate Movearound

Create View V1 AS

Select   rating, Min(age)

From    Sailors S

Where  S.age < 20

GroupBy  bid

Create View V2 AS

Select   sid, rating, age, date

From    Sailors S, Reserves R

Where  R.sid=S.sid

Select   sid, date

From    V1, V2

Where   V1.rating = V2.rating  and

              V1.age = V2.age

Sailing wizz dates: when did the youngest of each sailor level rent boats?



Query Rewrite: 

Predicate Movearound

Create View V1 AS

Select   rating, Min(age)

From    Sailors S

Where  S.age < 20

GroupBy  bid

Create View V2 AS

Select   sid, rating, age, date

From    Sailors S, Reserves R

Where  R.sid=S.sid

Select   sid, date

From    V1, V2

Where   V1.rating = V2.rating  and

              V1.age = V2.age, age < 20

Sailing wizz dates: when did the youngest of each sailor level rent boats?

First, move 

predicates up 

the 

tree.



Query Rewrite: 

Predicate Movearound

Create View V1 AS

Select   rating, Min(age)

From    Sailors S

Where  S.age < 20

GroupBy  bid

Create View V2 AS

Select   sid, rating, age, date

From    Sailors S, Reserves R

Where  R.sid=S.sid, and

             S.age < 20.

Select   sid, date

From    V1, V2

Where   V1.rating = V2.rating  and

              V1.age = V2.age, and age < 20

Sailing wizz dates: when did the youngest of each sailor level rent boats?

First, move 

predicates up 

the 

tree.

Then, move 

them

down.



Query Rewrite Summary

• The optimizer can use any semantically 

correct rule to transform one query to 

another.

• Rules try to:

– move constraints between blocks (because each 

will be optimized separately)

– Unnest blocks

• Especially important in decision support 

applications where queries are very 

complex.



Enumeration of Alternative Plans
• Task: create a query execution plan for a single Select-

project-join block (well, and aggregates).

• Main principle: some sort of search through the set of 

plans.

– Assume some cost estimation model; more later.

• Single-relation block case (only select, project, 

aggregation): 

– Each available access path is considered, and the one 

with the least estimated cost is chosen.

– The different operations are essentially carried out 

together (e.g., if an index is used for a selection, projection is 

done for each retrieved tuple, and the resulting tuples are 

pipelined into the aggregate computation). 



Queries Over Multiple Relations
• In principle, we need to consider all possible join 

orderings:

• As the number of joins increases, the number of alternative 

plans grows rapidly; we need to restrict the search space.

• System-R: consider only left-deep join trees.

– Left-deep trees allow us to generate all fully pipelined 

plans:Intermediate results not written to temporary files.

• Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA



Enumeration of Left-Deep Plans
• Enumerated using N passes (if N relations joined):

– Pass 1:  Find best 1-relation plan for each relation.

– Pass 2:  Find best way to join result of each 1-relation 

plan (as outer) to another relation.  (All 2-relation 

plans.)  

– Pass N:  Find best way to join result of a (N-1)-relation 

plan (as outer) to the N’th relation.  (All N-relation 

plans.)

• For each subset of relations, retain only:

– Cheapest plan overall, plus

– Cheapest plan for each interesting order of the tuples.



Enumeration of Plans (Contd.)

• ORDER BY, GROUP BY, aggregates etc. handled as a 

final step, using either an `interestingly ordered’ plan or 

an additional sorting operator.

• An N-1 way plan is not combined with an additional 

relation unless there is a join condition between them, 

unless all predicates in WHERE have been used up.

– i.e., avoid Cartesian products if possible.

• In spite of pruning plan space, this approach is still 

exponential in the # of tables.

• If we want to consider all (bushy) trees, we need only a 

slight modification to the algorithm.



Example

• Pass 1:

– Sailors:  B+ tree matches rating>5, and is 

probably cheapest.  However, if this selection is 

expected to  retrieve a lot of tuples, and index is  

unclustered, file scan may be cheaper.

• Still, B+ tree plan kept (tuples are in rating order).

– Reserves:  B+ tree on bid matches bid=100; 

cheapest.

• Pass 2: We consider each plan retained from Pass 1 

as the outer, and consider how to join it with the 

(only) other relation.

 e.g., Reserves as outer:  Hash index can be used to 

get Sailors tuples that satisfy sid = outer tuple’s sid 

value.

Sailors:
  B+ tree on rating
  Hash on sid
Reserves:
  B+ tree on bid

Reserves Sailors

sid=sid

bid=100 rating > 5

sname



Nested Queries

• Nested block is optimized 

independently, with the outer tuple 

considered as providing a selection 

condition.

• Outer block is optimized with the 

cost of `calling’ nested block 

computation taken into account.

• Implicit ordering of these blocks 

means that some good strategies are 

not considered.  The non-nested 

version of the query is typically 

optimized better.

SELECT  S.sname
FROM  Sailors S
WHERE EXISTS 

   (SELECT  *
    FROM Reserves R
    WHERE  
R.bid=103 
     AND  R.sid=S.sid)

Nested block to optimize:

 SELECT  *
 FROM Reserves R
 WHERE  R.bid=103 
     AND  S.sid= outer 
value

Equivalent non-nested query:

SELECT  S.sname
FROM Sailors S, Reserves R
WHERE  S.sid=R.sid 
   AND R.bid=103



Cost Estimation

• For each plan considered, must estimate cost:

– Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.

– Must estimate size of result for each operation in tree!

• Use information about the input relations.

• For selections and joins, assume independence of predicates.

• We’ll discuss the System R cost estimation 

approach.
– Very inexact, but works ok in practice.

– More sophisticated techniques known now.



Statistics and Catalogs
• Need information about the relations and indexes 

involved.  Catalogs typically contain at least:

– # tuples (NTuples) and # pages (NPages) for each relation.

– # distinct key values (NKeys) and NPages for each index.

– Index height, low/high key values (Low/High) for each tree 

index.

• Catalogs updated periodically.

– Updating whenever data changes is too expensive; lots of 

approximation anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the values 

in some field) are sometimes stored.



Size Estimation and Reduction 

Factors

• Consider a query block:

• Maximum # tuples in result is the product of the 

cardinalities of relations in the FROM clause.

• Reduction factor (RF) associated with each term reflects 

the impact of the term in reducing result size.  Result 

cardinality = Max # tuples  *  product of all RF’s.

– Implicit assumption that terms are independent!

– Term col=value has RF 1/NKeys(I), given index I on col

– Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))

– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT  attribute list
FROM  relation list
WHERE  term1 AND ... AND termk


